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ABSTRACT. We describe a statistical sampling approach to characterizing and comparing map
projection distortion within irregular areas. Statistical measures of distortion, coupled with tradi-
tional distortion isoline maps, give a clear picture of map projection distortion for irregularly
shaped areas, like the United States or portions of it. We calculate cumulative distribution func-
tions and several descriptive statistics from the distortion measures. In our example, we compare
two common projections, the Lambert azimuthal equal area and the Albers conic equal area, over
the conterminous United States and over two subregions. In addition to scale and angle distortion,
we develop a new measure of shape distortion. Our analyses show that the Lambert projection has
lower mean and median shape distortion when compared over the conterminous U.S., whereas the
Albers projection has a lower maximum distortion and distortion variance for all three distortion
measures. The cumulative distribution functions are substantially different and show that the Lam-
bert projection has lower distortion values for approximately 80% of the sample points. We also
compare a large unrestricted random sample with a systematic random sample. The sample size is

large enough that the unrestricted and systematic samples give virtually identical results.
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map projection for large irregular areas,
such as nations or continents, based upon
specific design criteria that relate to map projec-
tion distortion. In a recent example, White et al.
(1992) selected a map projection for the truncated
icosahedron- global surface tessellation that forms
the geometrical framework for an environmental
monitoring program. The monitoring program
required an equal area map projection surface for
the 20 spherical hexagons and 12 spherical penta-
gons comprising the tessellation, upon each of
which a regular sampling grid could be positioned
randomly. The sampling criteria dictated the
selection of an equal-area map projection for the
hexagon and pentagon faces, with the provision
that map projection distortion not be excessive
within the portion of the hexagon containing the
conterminous United States.
Young’s Rule (as described in Maling 1973,
165) guides the selection of the equal area projec-
tion for the regular spherical hexagons and

Cartographers often must select the optimal
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pentagons of the truncated icosahedron tessella-
tion. The rule is that an area of the earth approxi-
mately circular in outline is best represented by
one of the azimuthal projections, whereas asym-
metrical or elongated areas are better mapped
using conic or cylindrical projections. By this rule,
the Lambert projection would be chosen for the
truncated icosahedron hexagon and pentagon
faces. (When placing a grid across adjacent faces,
however, the recent projection developed by Sny-
der 1992 may be preferable). But is this projec-
tion adequate for the 48 continental United States
that fit into one hexagon? To answer this ques-
tion, and to address the more general question of
comparing the distortion characteristics of differ-
ent projections for an irregular portion of the
earth, we must consider how to compute and
compare distortion measures for irregularly
shaped areas.

Previous Map Distortion
Assessment Methods

One method for assessing map projection distor-
tion is to graphically display the surface formed
by the values of scale factors or other distortion
measures (see Robinson et al. 1995, 68-89 for
examples). These well-known, basic distortion
measures are briefly described in Appendix 1.
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Isoline maps of these measures allow one to easily
see the spatial pattern of distortion across the area
as well as the position of the point or line(s) of
zero distortion, but they do not necessarily give a
good picture of the average distortion or the
distortion extremes within an irregular area.

A second method comes from the mathematical
theory of minimum-error map projections. The
basic idea, developed by Airy and Clarke in the
nineteenth century, is that “the sums of squares of
scale errors integrated throughout the area of the
map should have minimum value” (Maling 1973,
172). An alternative statement of this criterion is
that the average squared scale error for the se-
lected projection should be less than the average
for any alternative projection. This is, of course,
an application of the method of least squares
described by Gauss in 1795. One could also re-
quire that the average squared scale error over a
specific part of the surface area be minimized. For
areas bounded by parallels, this requirement
could be studied by using Maling’s graphs (1973,
169-71), plotting magnitudes of distortion meas-
ures against angular distance from the point or
line(s) of tangency for various projections. How-
ever, a more complex numerical integration
method is required when analyzing irregular
areas such as the conterminous United States.

The best-known attempts at using numerical
integration methods to assess and minimize aver-
age scale distortion are found in the work of
Tsinger in 1916 and Kavrayskiy in 1934 (Snyder
1987, 99). Their efforts were directed toward
selecting optimal standard parallels for the Albers
equal area conic projection. They found standard
parallels that minimized scale distortions for the
land area being mapped, accomplishing this by
weighting narrow latitude bands according to the
amount of land area contained in each. This ap-
proach works well for the Albers and other projec-
tions, where lines of equal distortion follow
parallels.

A simple modification provides an equivalent
analysis for the Lambert projection. Since distor-
tion is equal at all points equidistant from the
projection center, numerical integration is accom-
plished by weighting each radial band by the land
area contained. This illustrates the problem-
specific structure that is required by numerical
integration. The two projections being compared
require different structures.

Robinson (1951) extended earlier work by
Behrmann in which isolines of maximum angular
deformation were used to delineate polygons of
“constant” distortion. The areas of these polygons
were measured by planimeter and used to

compute mean values. Robinson applied this
technique to arbitrary areas of interest—in his
case a generalized representation of land masses
over the earth—by computing the land areas for
5° latitude bands and then calculating maximum
angular and area distortion values for different
projections in these bands. The maximum values
were then averaged as in the procedure used by
Behrmann.

More recently, Dyer and Snyder (1989) used a
small set of points arrayed on a 2° graticule over
an area of interest to compute a minimum-error
equal area projection. They minimized the distor-
tion of the Tissot Indicatrix using iterated least
squares analysis on equal area preserving trans-
formations of plane coordinates of an initial equal
area projection. Snyder (1994) describes experi-
ments using the least squares criterion on
graticule cells weighted by surface area on the
sphere.

Monte Carlo integration (Hammersly and
Handscomb 1964) also can provide this assess-
ment. Unlike the methods of Dyer and Snyder,
Monte Carlo integration does not have to be
tailored to the method of projection, which makes
comparisons easier. Tobler (1964) first proposed
random simulation of distortion properties. This
was partly in response to the newly developed
digital computer, which made it possible to com-
pute angular and areal distortion from a statisti-
cally valid number of randomly placed spherical
and plane triangles. The method was not rigor-
ously evaluated from the statistical viewpoint,
however, and the rest of this paper is devoted to
demonstrating that statistical simulation of nu-
merical - integration provides similar analyses
without tedious attention to the patterns of distor-
tion or to regional boundaries. Monte Carlo inte-
gration will be demonstrated for the
conterminous United States using the Lambert
azimuthal equal area projection and the Albers
conic equal area projection. We choose the Lam-
bert projection because of its suitability for a hex-
agonal area of interest and want to compare it to
the commonly used Albers projection on irregular
subsets of that area.

Statistical Analysis of Map
Projection Distortion

Although the use of statistical sampling in map
projection distortion analysis may seem novel,
sampling methods for the estimation of areas of
irregular map regions associated with ranges of
surface values such as elevation are well known
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(Muehrcke 1986; Maling 1989). The dot planime-
ter is perhaps the best-known sampling device for
this purpose. A regular or (systematic) random
array of dots on clear film is placed over the ir-
regular map area and the dots falling within the
area are tallied and multiplied by the unit area
value of a dot in order to estimate the total sur-
face area. If the elevation or any other value at
each point can be determined, the average surface
height or volume can be estimated easily. The
average scale distortion for the portion of a trun-
cated icosahedron hexagonal face containing the
conterminous United States could be determined
with a dot planimeter, but the determination of
distortion at each point would be tedious. A digi-
tally created dot array is superior, allowing deter-
mination of distortion from the explicit point
location.

Dot planimeters compute surface area by simu-
lation of numerical integration of finite areas
through systematic or random sampling. As with
any sampling effort, the design features to be
determined prior to application include the geo-
metrical arrangement of sample points, the num-
ber or density of points, the nature or
specification of the surface to be analyzed, and the
descriptive parameters that will be used to charac-
terize the surface.

Numerical Integration and
the Statistical Perspective

Systematic grids with points arranged as vertices
of squares are commonly used in numierical inte-
gration. More complex patterns of points are
sometimes used for higher order surfaces. A com-
mon example is provided by the Newton-Cotes
formulas for polynomials (Press et al. 1988). For
any complex region or surface, the patterns and
formulas can be kept more simple if the number
of sample points is increased. A particular sam-
pling pattern and numerical integration formula
may give exact integrals for certain surfaces, but
Inexact integrals for higher order surfaces. Irregu-
lar regions pose another source of error due to
the irregular boundary effects. We focus here on
regular grids of high density applied to irregular
regions in two dimensions; the edge-effect error is
reduced by density, but is not easily eliminated.
The statistical perspective provides another way
of treating this error. We introduce a random
sampling element into the process, providing a
different set of sample points for each realization
of the “numerical integration” process. As a con-
sequence, the error also varies among

realizations, and statistical assessment of precision
then follows the familiar statements of bias, vari-
ance, and confidence bounds. If the average error
over all realizations is zero, then bias is zero, and
the average squared error of an unbiased estima-
tor is its variance. Appropriately applied randomi-
zation has the capacity for eliminating the bias, or
reducing it to a negligible level, regardless of the
order of the surface, and standards of precision
can be met by appropriate choice of sample size.

The simplest sampling design is an unre-
stricted random sample (URS) of points; when
used for integration, this design historically has
been referred to as Monte Carlo integration
(Hammersly and Handscomb 1964; Press et al.
1988). The properties of such a sample are pro-
vided by the theory of independent random vari-
ables, which is the basis for much of statistics
(refer to any elementary text in mathematical
statistics or methods such as that presented in, for
example, Snedecor and Cochran 1980). The
random variable is the value of the response at a
randomly located point. Two independent ran-
dom points give two independent values of the
random variable, and so on. The expected value
of this random variable is the mean value of the
response over the region, as determined by exact
integration, so that the mean of the sample of
response values is an unbiased estimator of the
true mean, and, by implication, the sample analy-
sis is a form of numerical integration. i

It is in the representation of the cumulative
distribution function (CDF) of the random vari-
able that the URS most satisfyingly fulfills the
concept of Monte Carlo integration. Designate
the region of the United States in which the dis-
tortion measure is equal to or less than a particu-
lar value. Then the number of sample points that
fall in this region provides a Monte Carlo estimate
of the area of the region, but without delineating
it. The empirical CDF is the representation of this
estimated integral for all observed values of the
distortion measure, scaled by the total area of the
United States, itself estimated by the total number
of points falling in the United States. The empiri-
cal CDF is the comprehensive statistic summariz-
ing the data.

A systematic sample behaves similarly (Moran
1950). This form, with regularly spaced and
equally weighted observations, is favored for sim-
ple numerical integration designs when sample
size is not limiting, but requires special treatment
at the edges of the region of integration (see, for
example, Yates 1949). Random placement of the
grid of points effectively simulates these edge
adjustments, with the result that the systematic
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Distortion Parameters on Tissot's Indicatrix

Figure 1. The geometric relationships between distortion
parameters of interest displayed on a Tissot Indicatrix for a
projection in normal aspect.

mean is nearly unbiased for the true mean as
determined by exact integration; this bias dimin-
ishes as the grid density increases. The theory of
systematic sampling comes from a subset of statis-
tical theory called sampling theory. It is generally
recognized that systematic sampling is more pre-
cise for a given sample size than unrestricted
random sampling when the surface is well be-
haved, as in the current application. However, it is
sometimes difficult to document the gain in preci-
sion from analysis of a sample. Systematic sam-
pling with a square grid is a common design; a
triangular grid will give slightly greater precision
(Matérn 1986).

Sample size is an important consideration in
field sampling, but it is not an issue in the present
application because little additional cost is in-
curred even by doubling the sample size. We want
a sample size such that a major increase will pro-
duce an unimportant change in the results. That
is, the sample size we will use for Monte Carlo
analysis will be sufficiently large that we can con-
sider the results as having been obtained by inte-
gration. Note too that sample size flexibility of the
URS over a regular systematic grid is an addi-
tional advantage in the present context. The
regular triangular grid can expand by no less than
a factor of three if the randomization is per-
formed at the original density (White et al. 1992).
On the other hand, the URS can be expanded by
the addition of another independent URS of
whatever size.

The systematic sampling grid for the contermi-
nous United States described in White et al.
(1992) will be used to illustrate the application of
a systematic sample to the assessment of map

projection distortion. This sampling density was
chosen for specific purposes, but we use it as an
example in order to compare the results at this
density to those obtained from Monte Carlo inte-
gration. We also apply this assessment method to
portions of the United States; small subregions
will have smaller samples, and the precision of
characterization of distortion may become a factor
when addressing smaller areas.

Distortion Measures

The distortion measures selected to characterize a
map projection should be well suited to describing
patterns of distortion for a single projection, as
well as for comparing distortion on several projec-
tions. We are interested, here, in equal area pro-
jections, therefore we need measures that indicate
scale distortion, angular deformation, and total
shape distortion at a point. For scale distortion we
may use a or b (or k or k), and for angular distor-
tion @ (see Appendix 1). But we are also inter-
ested in a measure of total shape distortion that
combines the distortion in the two orthogonal
directions represented by a and b (or 4 and k). For
this shape distortion, two possibilities are [(1-a)® +
(1-b)*] or [(1-k)* + (1-k)?), both fundamental quan-
tities used in the formulation of minimum error
map projections (Maling 1973). More desirable is
a normalized measure, having a value of 0.0 at the
point of tangency or along the line or lines of
tangency (standard parallels), and values greater
than 0.0 elsewhere. The measure

Ja2ro? - 2,

the normalized magnitude of a vector formed by
the lengths of the orthogonal a and b axes in the
Tissot Indicatrix, has this property for equal area
projections. In this paper we use

2= Jh2 442 —‘/E

as the distortion measure and call it the “shape”
distortion. We use % and % rather than a and &
since 6 * = 90° for normal aspect azimuthal, conic,
and cylindrical equal area projections, so thata =
kora =h,and b = h or b = k, respectively. (In
this paper we use an oblique case of the Lambert
azimuthal projection, therefore our %k for that
projection is in fact k&, the scale factor in a direc-
tion perpendicular to the radius from the center,
see Snyder 1987, 185). For the purposes of our
investigations we will use for scale distortion
|k-1], which has a value of 0.0 at the points of
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25,000 Unrestricted Random Sample Points

Figure 2. A 25,000-point random sample in the conterminous United States.

development and positive values elsewhere, the
same behavior as the other two measures. The
geometric relationships between a, b, @, and z~
(the unnormalized z for the general case) are
shown in Figure 1. ’

Statistical Representation

The random variable defined by the chosen meas-
ure of shape distortion at a randomly selected
point in the study region is completely character-
ized by its CDF. This function characterizes the
proportion of the study region in which distortion
is less than a particular value. Quantiles are read
directly from the CDF; the median, the 10th per-
centile, and quartiles are all examples of parame-
ters that are simply read. The mean and standard
deviation are also determined by the distribution
function, but cannot be determined easily or pre-
cisely from the plot. It is common to supplement
the plot by reporting a few parameters that have
particular interest. The CDF is also known in
cartography as a cumulative frequency curve.
Comparison of the sample distribution func-
tion to the CDF of known theoretical distributions

may also be of interest, although more for the
underlying form of distortion patterns than in the
integral over the irregular region. Further, certain
statistical distributions, like the normal, are of no
comparative interest; for the measure we have
chosen, distortion is bounded below by zero,
whereas the normal is centered at the mean and
symmetric to = . One might compare the distor-
tion distribution to a gamma CDF, but this would
be meaningful only if a particular gamma distri-
bution were implied by some feature or
hypothesis.

Comparison of two distribution functions is
straightforward, particularly in our context where
we have a sufficiently large sample size. We can
describe differences between projections by refer-
ence to particular features of the CDFs, without
resorting to statistical tests. It may also be of inter-
est to compare parameters, such as means and
standard deviations, and again the issue of statisti-
cal significance does not arise. Any difference that
might conceivably be considered of practical in-
terest will be statistically significant. We demon-
strate this in the analysis section below. This
statistical description, coupled with traditional
distortion isoline maps, gives a very clear picture
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11,995 Systematic Sample Points

Figure 3. An 11,995-point systematic sample in the conterminous United States obtained from an equilateral triangular grid.

of the geographic distribution of distortion over
an irregular area, such as the conterminous
United States, or some portion thereof.

Distortion Analysis Experiments

Sample Points

We created a set of 25,000 randomly positioned
sample points within the conterminous United
States. We created this set by generating over
50,000 pairs of random numbers, which were
scaled to the coordinate space of a cylindrical
equal area projection of a bounding quadrilateral
for the United States (25°-50°N, 65°-125°W). We
then clipped these points to the boundary of the
conterminous United States. An unrestricted
(independent) random sample of 25,000 points
found by this protocol formed the sample (Figure
2). Finally we converted each point from map
projection to geographic (latitude, longitude)
coordinates using the inverse cylindrical equal
area projection equations for the sphere.

We obtained systematic sample points from the
equilateral triangular point sample (with

approximately 27-km spacing between points)
described in White et al. (1992). We also clipped
these to the United States boundary, obtaining
11,995 points (Figure 3). For the purpose of com-
paring the random and systematic samples, we
also used the first 11,995 points of the random
sample.

For subsets in New England and Nebraska we
clipped the random and systematic samples to the
boundaries of these areas. New England is de-
fined as the states of Maine, New Hampshire,
Vermont, Massachusetts, Rhode Island, and
Connecticut.

Analysis

We conducted a series of experiments. First we
analyzed the distortion functions of the two pro-
Jjections on that portion of their domains sufficient
to cover the conterminous United States. This
reveals the behavior of these functions along
transects of maximum variation. Then we did
three sets of sampling experiments. These com-
prise three geographical domains, two different
sampling designs, and six statistics for each of
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41.75° N, Lambert
SLTe Azimuthal
Nebraska Equal Area

Albers Conic
Equal Area

45.5°

20.5°N

Projection Geometries

Figure 4. The geometry of the Lambert azimuthal equal area projection (left) and the Albers conic equal area projection

{right) positioned for this study.

three different distortion measures for the two
projections. For the conterminous U.S. we also
varied the sample size for one of the designs. The
experiments are summarized in Table 1. In the
following discussion we highlight some of the
results. The complete results are listed in Appen-
dix 2.

Geographical
domains:

conterminous United States,
New England, Nebraska

Sampling designs:  {random, systematic

Distortion measures: | |k-1], 0,2z

Statistics: minimum, maximum, median, mean,
standard deviation, CDF

[Vlap projections: Lambert, Albers

Table 1. Parameters investigated in sampling

experiments.

In our analysis, we used the Lambert azimuthal
equal area projection centered at 41°45'N,
97°45'W (in northeastern Nebraska). We selected
this center position by visual inspection to cover
the area of interest as described in White et al.
(1992). We used the standard parameters for the
Albers conic equal area projection as it is posi-
tioned for the conterminous United States with
standard parallels at 29°30'N and 45°30'N (Figure
4).

First, we describe the distortion patterns of the
two projections across the steepest gradients of
distortion values. For the Lambert projection, this
gradient is along a radius from the projection
center and, for the Albers, it is along a meridian.

In Figure 5 we graph the three distortion meas-
ures for the Lambert projection as a function of
the angle of arc from the center of the projection.
We computed the Lambert distortion measures
for each 0.1 degree of arc for 26 degrees from the
center, a distance sufficient to cover the contermi-
nous United States from our selected center. In
Figure 6 we graph the same distortion measures
for the Albers projection distortion as a function
of latitude. We computed the Albers distortion
measures for each 0.05 degree of latitude between
latitudes 24 and 50, spanning the area of interest.

All distortion functions for the Lambert projec-
tion increase with distance from the center. The
Albers distortion functions, however, show bimo-
dal minima at the standard parallels with a local
maximum between them. Note that the Albers
functions are only approximately, not precisely,
symmetric about a midpoint. Distortion functions
of a secant cylindrical projection could be ex-
pected to be symmetric. For both projections, the
shape distortion functions increase less sharply
than the scale or angular distortion functions, but
exhibit the same qualitative behavior.

In Figures 7 and 8 we show the CDFs for each
distortion measure for the Lambert and Albers
projections, respectively. The Lambert CDFs
display the smooth cumulative behavior that
would be expected from the shape of the distor-
tion functions in Figure 5. The Albers CDFs,
however, have a sharp break at a sample propor-
tion of about 0.9. These breaks occur at distortion
values equal to the local maxima between the
standard parallels and help to describe the opti-
mal distortion performance in the area
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Figure 5. Scale, angular, and shape distortion functions of
the Lambert projection.

immediately surrounding and between the stan-
dard parallels, and the marked increase in distor-
tion in latitudes north and south of this optimal
area. This behavior in the Albers CDFs is also
apparent in our samples over the entire contermi-
nous U.S. (see Figures 11 and 12).

We then computed the distortion measures
over the conterminous U.S. Figures 9 and 10

Figure 6. Scale, angular, and shape distortion functions of
the Albers projection.

graph the distortion statistics for the 25,000-point
URS for both projections for scale and shape
distortion, respectively. (Since scale and angular
distortion behave nearly identically, we omit dis-
cussion of angular distortion henceforward.) The
results reveal a significant difference in distortion
behavior between the two projections: while the
Albers projectionr has lower maximum distortion
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Figure 7. CDFs for the Lambert distortion functions.

values and lower variances, the Lambert has lower
means and medians. This suggests that for some
purposes, such as minimizing mean distortion,
the Lambert performs better (even though it may
not be optimally centered for this purpose).

In Figures 11 and 12 we show the sample CDFs
for scale and shape distortion, respectively. On these
graphs we show both the Lambert and Albers graphs
simultaneously since they are both derived from the

Figure 8. CDFs for the Albers distortion functions.

same sample and thus we can compare them di-
rectly. For both distortion measures the Lambert
projection has lower distortion values over about
80% of the sample points. This demonstrates how
the CDF, in addition to the statistics of central ten-
dency and dispersion, is another important statistic
for comparing projection performance, and how in
this case the Lambert performs better than the Al-
bers over a large portion of the area of interest.
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Figure 9. Scale distortion statistics for the 25,000-point
random sample over the conterminous United States.

Figure 10. Shape distortion statistics for the 25,000-point
random sample over the conterminous United States.
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Figure 11. Sample CDFs for both Lambeﬁ and Albers
scale distortion on the 25,000-point random sample over
the conterminous United States.

Random vs. Systematic Sampling

We can analyze the effects of random vs. system-
atic sampling by holding constant all parameters
except the sampling method. For this experiment,
we compared the 11,995-point systematic sample
with the first 11,995 points of the 25,000-point
URS. In Figures 13 and 14 we present the sample
CDFs for scale and shape distortion, respectively,
for the systematic samples. There is no discernible
difference when we overlay these graphs with
those in Figures 11 and 12. The CDFs for the
11,995-point random samples are likewise essen-
tially identical and we do not display them here.
These statistics support the contention that
random and systematic samples produce virtually
indistinguishable results for samples the size of
our experiments over the United States. They

Figure 12. Sample CDFs for both Lambert and Albers
shape distortion on the 25,000-point random sample over
the conterminous United States.

further support the assertion that the sample size
(25,000) used in these analyses is sufficiently large
that apparent differences between the distortion
measures of the respective projections can be
considered real. Maximum distortion is the only
statistic for which we do not necessarily obtain a
good estimate. There are only a few places in the
US. where the distortion measures approach
their maximum values, and the number of sample
points falling in those places will be small. This is
the kind of error that one must anticipate in
Monte Carlo integration. To determine maximum
distortion, one should not take a random sample
of points but rather identify it at the points for
which it is calculated to be maximum. Therefore,
we determined the maximum scale distortion for
each projection by calculating the values for each
point on the boundary of the conterminous U.S.;
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Figure 13. Sample CDFs for both Lambert and Albers
scale distortion on the 11,995-point systematic sample
over the conterminous United States.

the points with maximum value for each projec-
tion are shown in Figure 15.

Even though we have demonstrated the virtual
identity in performance of the two sampling de-
signs for so large a sample, this does not prove
the general properties of the sampling methods
but merely provides a confirmatory example. In

Figure 14. Sémple CDFs for both Lambert and Albers
shape distortion on the 11,995-point systematic sample
over the conterminous United States.

the case of URS, conventional sampling theory
can provide stronger evidence in the form of a
basic relation between precision and sample size
(n); that is, precision varies as J/n . From this, we
can strongly assert the level of precision of spe-
cific descriptive estimates. For example, 95%
confidence bounds on the population mean are

p—
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Figure 15. Points in the conterminous United States with maximum scale distortion values for the Lambert and Albers

projections.
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Figure 16. Scale distortion statistics for the 263-point
systematic sample over New England.

Figure 17. Shape distortion statistics for the 263-point
systematic sample over New England.
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Figure 18. Scale distortion statistics for the 307-point
systematic sample over Nebraska.

1.96s
ok
deviation as reported in Appendix 2.

For example, we compute the half width of the
confidence bound on the true mean shape distortion
over the United States, for the Lambert projection
and our URS of 25,000 points, to be 0.1008-10%,
which is about 1.6% of the estimated mean distortion
of 0.624-10*. Expressed in another way, we are con-
fident that the true mean is between 0.614-10"* and
0.634-10™. Similarly, we are confident from the URS
of size 11,995 that the true mean shape distortion is
between 0.610-10* and 0.639-10®, based on a half
width of 0.1455-10°. Analysis for the Albers shape
distortion on the 25,000-point URS gives a confi-
dence bound half width of 0.6010-10%, with corre-
sponding confidence bounds between 0.743-10 and
0.755-10",

Earlier, we contended that an estimate close
enough to require a test of significance would be

given by where s is the sample standard

Figure 19. Shape distortion statistics for the 307-point
systematic sample over Nebraska.

of no interest. We have taken this position because
there is very little cost involved in taking addi-
tional observations, so that we can determine the
minimum sample size required for a desired accu-
racy and then make the sample considerably
larger than that.

There is no theoretical basis on which to make
similar statistical assessments for the systematic de-
sign. Reasonable confidence bounds can be gener-
ated, but the calculations cannot be extended to
larger or smaller samples on a theoretical basis.
Furthermore, the statistics provided here are inade-
quate to produce confidence bounds. On the other
hand, the appropriate confidence bound half width
for the systematic sample will be bounded above by
that computed for the URS, so the URS analysis can
serve as a crude planning tool.

We note that the context of this application is
different from many examples of statistical analysis
because some traditional sampling concepts are no
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Figure 20. Sample CDFs for both Lambert and Albers
scale distortion on the 263-point systematic sample over
New England.

Figure 21. Sample CDFs for both Lambert and Albers
shape distortion on the 263-point systematic sample over
New England. :
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Figure 22. Sample CDFs for both Lambert and Albers
scale distortion on the 307-point systematic sample over
Nebraska.

longer relevant, for example, sampling efficiency. A
reasonable strategy for sampling the distortion meas-
ures is to estimate an adequate sample size and then
double or triple it. There is little virtue in parsimony
in this context because additional observations can
be obtained at almost no cost. In contrast, a field
sample will require a substantial investment in col-
lecting and processing each datum, so that efficient
sampling is imperative.

Subpopulations

One great advantage of the sampling approach to
numerical integration, as we illustrate here, is a
straightforward application to an analysis of any
identified subpopulation. The process consists of
simply identifying any subset of the region occupied
by the population in such a manner that sample

Figure 23. Sample CDFs for both Lambert and Albers
shape distortion on the 307-point systematic sample over
Nebraska.

points can be classified as in or as not in this subset.
The subset of the sample can then be used to gener-
ate the distributional characteristics of the subpopu-
lation, as we now illustrate with two simple cases. The
state of Nebraska and the New England region pro-
vide two such subpopulations. The subset of a URS
contained in any such region is a conditional URS
for that region. Similarly, for a randomized system-
atic sample, the portion contained in any subregion
is a randomized systematic sample of that subregion.
The universality of the method, and the ease of ap-
plication to a variety of objectives and subpopula-
tions, make the method doubly attractive.

In Figures 16 and 17 we graph the scale and
shape distortion statistics, respectively, for the
systematic sample of New England. Since one of
the standard parallels for the Albers projection
crosses New England, the distortion for this
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projection is low; in contrast New England is at a
great distance from the center of the Lambert
projection and therefore the Lambert distortion is
high. In Figures 18 and 19 we show the scale and
shape distortion statistics, respectively, for the
Nebraska systematic sample where the situation is
reversed. In Figures 20, 21, 22, and 23 we show
the CDFs that correspond to the graphs in Fig-
ures 16, 17, 18, and 19. The contrast between the
two projections in these two areas is also evident
in the CDFs. The full resuits of these experiments
are in Appendix 2.

Conclusion

The statistical analysis of map projection distor-
tion, as indicated by scale, angular, and total
shape deformation for equal area projections,
demonstrates that the Lambert azimuthal equal
area projection is well suited for an irregular area
with the shape of the conterminous United States.
In particular, the Lambert projection has a
smaller mean distortion than the Albers conic
equal area, whereas the Albers projection has
smaller mean squared distortion, as shown by the
smaller standard deviation. Using the latter crite-
rion, we would prefer the Albers projection. On
the other hand, we might prefer the Lambert
projection since approximately 80% of the conter-
minous U.S. has lower distortion with it. Our
contention is that the statistical approach to map
projection distortion comparison makes such
distinctions possible.

We have shown statistical sampling of map
projection distortion surfaces as a simulation of
numerical integration to be satisfactory under
both random and systematic sampling designs.
Although systematic sampling is somewhat more
precise than unrestricted random sampling for
any specific sample size, the distinction is unim-
portant in this context. A simple increase in size
of the URS will capture any difference in preci-
sion. For the analyses made in this paper, the
URS is superior, since the estimator of the popu-
lation standard deviation is unbiased and the
theory of independent random samples can be
used to make assessments that cannot be made for
the systematic sample. For other analyses—for
example, generating a map of the spatial patterns
of distortion—a systematic sample would be
superior.

Whatever the objective of comparison of pro-
jections, the statistical approach to map projection
distortion analysis provides a useful tool for un-
derstanding and comparing the nature of the

distortion or other spatially varying features over
specific irregular regions. The URS is better
suited to this purpose than the systematic sample
of points, although, for samples as large as those
used here for the U.S,, there is little difference in
the results from the two sampling designs.
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“

Appendix 1
Distortion Analysis

“

The following introductory paragraphs are in-
tended to acquaint the reader with the concepts
and measures associated with map projection
distortion and distortion measures. These under-
lie the statistical approach to map projection
comparison.

Basic to cartography is the fact that a segment
of the spherical or spheroidal earth cannot be
projected onto a planar surface without introduc-
ing some type of geometric distortion. Also well
known is that on particular map projections cer-
tain geometrical characteristics can be preserved,
such as' constancy in surface area between globe
and map (equivalence), constancy in shape be-
tween globe and projection surface in the immedi-
ate neighborhood of any point on the projection
(conformality), and preservation of angles and
distances on the globe outward from the projec-
tion center point (equidistance). Rrojections with
equivalence throughout are called equal area,
those with conformality everywhere are termed
conformal, and those with equidistance are called
equidistant. Unfortunately, no single map projec-
tion can have all three characteristics, let alone be
conformal and equal area simultaneously.

Equivalence, conformality, and equidistance, or
lack thereof, are projection properties first de-
scribed mathematically by Lambert in the eight-
eenth century, and then further investigated by
Gauss and Tissot in the nineteenth century. In the
1820s Gauss employed partial derivatives to de-
termine what are called particular scales, meaning
“the relation between an infinitesimal linear dis-
tance in any direction at any point on a map pro-
Jjection and the corresponding linear distance on
the globe” (Maling 1973, page 63). The ratio of
these linear distances gives the amount of scale
distortion in the particular direction. Of special
interest is scale distortion in the directions of the
meridian and parallel passing through the point,
termed h-and k distortion, respectively. Also

important is the angle on the map projection,
termed 6, formed by the intersection of the par-
allel and meridian, knowing that all parallels and
meridians intersect at 90° angles on the globe.

In the 1850s, Tissot carried forth the work of
Gauss in several ways, one of which has become
known as Tissot’s Theorem: “Whatever the system
of projection there are at every point on one of
the surfaces two directions perpendicular to one
another and, if angles are not preserved, there are
only two of them [perpendicular directions], such
that the directions which correspond to them on
the other surface also intersect one another at
right angles” (Maling 1973). These orthogonal
directions are termed the principal directions at a
point.

Tissot’s well-known indicatrix next comes into
play. The idea behind the indicatrix is that “an
infinitely small circle on the surface of the globe
will be transformed on the plane into an infinitely
small ellipse whose semi-axes lie along the two
principal directions” (Maling 1973). The lengths,
a and b, of the semi-major and semi-minor axes of
the ellipse indicate the maximum scale enlarge-
ment and reduction at the point on the projection
relative to the globe. The amount of area distor-
tion is given by the product a+b, which Gauss de-
termined to be equal to hk-sin 8°. On equal area
projections, ab = 1.0, whereas a = b on conformal
and a or b = 1.0 on equidistant projections.

On many azimuthal, conic, and cylindrical
projections (in normal aspect), 8 = 90°, so that &
k = ab. Hence, for the equal area versions of
these three projection types, ki = 1.0, so that b =
1/k. Another measure related to scale distortion is
the maximum angular deformation, @, which
indicates the maximum deflection of any azimuth
at a point on the globe when projected. The equa-
tion, @ = 2-sin"((a-b)/(a+b)], is used commonly to
find the maximum angular deformation at any
point on the projection.
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Appendix 2
Results of Experiments

U.S. 25,000-point U.S. 11,995-point U.S. 11,995-peint
random sample random sample systematic sample
Lambert |k- 1]
minimum 0.000000105656 0.000002181248 0.000000026782
maximum 0.019518537294 0.019518537294 0.019145526405
median 0.004449347683 0.004431322894 0.004471964345
mean 0.005320085497 0.005319218037 0.005351944406
std. dev. 0.004034861724 0.004039316482 0.004079002611
Lambert o
minimum 0.000000211312 0.000004362491 0.000000053565
maximum 0.038658579692 0.038658579692 0.037926840647
median 0.008878928032 0.008843038170 0.008923960035
mean 0.010595741805 0.010593980987 0.010658766128
std. dev. 0.008014573583 0.008023467706 0.008101839051
Lambert z
minimum 0.000000000000 0.000000000007 0.000000000000
maximum 0.000528413434 0.000528413434 0.000508597687
median 0.000027872601 0.000027647726 0.000028156047
mean 0.000062403611 0.000062439864 0.000063373471
std. dev. 0.000081309105 0.000081307732 0.000082793152
Albers |k-1]| »
minimum 0.000000774930 0.000002081176 0.000005360482
maximum 0.014170927748 0.014170927748 0.013388290878
median 0.007469524690 0.007500013734 0.007470314812
mean 0.006647787048 0.006659865854 0.006629512688
std. dev. 0.002905175262 0.002910419016 0.002921134452
Albers o
minimum 0.000001549861 0.000004162356 0.000010720992
maximum 0.028141988825 0.028141988825 0.026598135314
median 0.014991803417 0.015054474446 0.014987862557
mean 0.013336325720 0.013360523201 0.013299580914
std. dev. 0.005834789611 0.005845036834 0.005866892723
Albers z
minimum 0.000000000001 0.000000000006 0.000000000041
maximum 0.000280013464 0.000280013464 0.000250132540
median 0.000079463343 0.000080129108 0.000079421571
mean 0.000074919253 0.000075189444 0.000074705500
std. dev. 0.000048481768 0.000048706235 0.000048659742
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New England New England Nebraska Nebraska
1,166-point 263-point 1,402 -point 307-point
random sample systematic sample random sample systematic sample
Lambert |k-1|
minimum 0.012420714839 0.012363590439 0.000000105656 0.000000026782
maximum 0.019518537294 0.019145526405 0.000865845106 0.000853359897
median 0.015126128433 0.015210325420 0.000139462271 0.000134937983
mean 0.015333822728 0.015377209726 0.000219354466 0.000221059109
std. dev. 0.001808530342 0.001804960020 0.000214439383 0.000220340705
Lambert
minimum 0.024687794223 0.024574952441 0.000000211312 0.000000053565
maximum 0.038658579692 0.037926840647 0.001730940741 0.001705991778
median 0.030024610644 0.030190469750 0.000278905093 0.000269857759
mean 0.030430503592 0.030515977571 0.000438614882 0.000442020977
std. dev. 0.003561334705 0.003554254596 0.000428728588 0.000440526833
Lambert z )
minimum 0.000215491734 0.000213526268 0.000000000000 0.000000000000
maximum 0.000528413434 0.000508597687 0.000001059301 0.000001028985
median 0.000318732313 0.000322263593 0.000000027502 0.000000025747
mean 0.000331889942 0.000333700911 0.000000132957 0.000000137467
std. dev. 0.000077700815 0.000077617362 0.000000222741 0.000000229202
Albers |k-1|
minimum 0.000011551382 0.000030821077 0.005569818468 0.005580511348
maximum 0.008123329343 0.008021655312 0.009071795671 0.009068814790
median 0.003449399555 0.003528361366 0.007746334766 0.007674313855
mean 0.003696526486 0.003710334579 0.007608117079 0.007572308990
std. dev. 0.002267272702 0.002265338671 0.000974445404 0.000975846273
Albers ©
minimum 0.000023102630 0.000061641205 0.011170717410 0.011192222732
maximum 0.016312825843 0.016107829630 0.018226137674 0.018220121592
median 0.006910711151 0.007069186709 0.015552830172 0.015407673461
mean 0.007408276369 0.007435569885 0.015275220381 0.015203058852
std. dev. 0.004552141643 0.004548018939 0.001963465081 0.001966271152
Albers z
minimum 0.000000000189 0.000000001343 0.000044118364 0.000044288397
maximum 0.000094084530 0.000091734724 0.000117449267 0.000117371744
median 0.000016885017 0.000017668302 0.000085522078 0.000083933133
mean 0.000026724130 0.000026832583 0.000083858371 0.000083081183
std. dev. 0.000026651695 0.000026700323 0.000020805588 0.000020812505
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